The Crystal Structure of Leucophanite*

BY E. CANNILLO, G. GIUSEPPETTI AND V. TAZZOLI

Centro di Cristallografia del C.N.R., sez. VI, Istituto di Mineralogia dell'Università di Pavia, Italy

(Received 14 November 1966)

Leucophanite is a silicate of general formula CaNaBeSi₂O₆F. The space group assumed for this work is $P_{21}_{21}_{21}$ with a=7.401, b=7.420, c=9.939 Å, Z=4. The true space group is probably P1. The crystal structure has been solved, on the basis of its analogy with that of another silicate, melilite, from a three-dimensional Patterson synthesis. The final bond distances and angles are obtained from coordinates refined by the least-squares method applied to three-dimensional orthorhombic data (final R value: 9.4%). Triclinic refinement is in progress. The crystal structure consists of infinite sheets of BeO₄ and SiO₄ tetrahedra between which Ca and Na atoms are arranged. The relationships between the crystal structures of melilite and leucophanite are described and a hypothesis is advanced to explain the differences between them.

Introduction

Leucophanite is a late-magmatic silicate containing Ca, Na, Be and F. Its chemical and crystallographic data, cited by Strunz (1966) in the last edition of *Mineralogische Tabellen*, are derived from two papers by Zachariasen (1930, 1931) on leucophanite and meliphanite (another silicate closely related to leucophanite). According to Zachariasen these minerals could both be derived from the 'ideal' compound Ca₂BeSi₂O₇. The former would be obtained by replacing $\frac{1}{2}$ Ca with Na and $\frac{1}{7}$ O with F, the latter by replacing $\frac{1}{3}$ Ca with Na, $\frac{1}{9}$ Si with Al and an appropriate amount of O with F.

Zachariasen also considered that meliphanite, being only a little different from the ideal compound, would probably have a crystal structure very near to that of melilite Ca₂MgSi₂O₇ (Warren, 1930), because of the similar properties of Be and Mg. In fact both minerals are tetragonal and have almost identical cell parameters (taking into account the different orientation and the doubling of c in meliphanite). On the other hand, the replacement of O by F in leucophanite would exceed the threshold at which a distortion in the structure would occur producing a lower symmetry, in this case orthorhombic.

The structural model proposed by Warren was successively confirmed and refined by Smith (1953). The crystal structures of both meliphanite (Dal Negro, Rossi & Ungaretti, 1967) and leucophanite have been analysed in our laboratory.

Experimental

For the present work natural crystals from Brevig (Norway) were used. Two chemical analyses carried out by us are in substantial agreement with the published formula: $CaNaBeSi_2O_6F$.

The lattice parameters were determined at room temperature by measuring with a single-crystal diffractometer the 2θ values of appropriate reflexions and extrapolating the corresponding interplanar spacings, plotted against $\frac{1}{2}(\cos^2\theta/\sin\theta + \cos^2\theta/\theta)$, to $2\theta = 180^\circ$. The values so obtained are: $a = 7.401 \pm 0.008$, $b = 7.420 \pm 0.005$ Å.

The theoretical specific gravity computed on the basis of these cell parameters for Z=4 is 2.961, whereas the experimental one is 2.959 g.cm⁻³.

The space group used for this work is $P2_12_12_1$ according to the following systematic absences: h00 with h=2n+1, 0k0 with k=2n+1, 00l with l=2n+1 and to Zachariasen's considerations. Actually not only three h00 reflexions with h=2n+1 were detected, but a careful inspection of the X-ray pictures revealed slight differences in the intensities of hkl, hkl, hkl and $hk\bar{l}$ reflexions. These differences are significantly larger than the errors in measuring the intensities. So the true space group would be P1. However, it has been thought that the differences mentioned above are due to such small displacements from the orthorhombic symmetry as to be not essential in the determination of the crystal structure. For this reason the intensities of only one octant of the reciprocal sphere were measured. Of course the question must be reconsidered in the refinement.

A cylindrical specimen of leucophanite was used for recording intensities. The axis of the cylinder was parallel to the *b* axis and the radius was 0.016 cm. Weissenberg equi-inclination photographs of *hkl* (*k* from 0 to 6) reflexions were taken with nickel-filtered copper radiation, using the multiple film technique. A total of 628 independent reflexions in the space group $P2_12_12_1$ was inspected; 42 of them did not give any observable blackening on the films.

The intensities were measured with a Nonius microdensitometer and corrected for $\alpha_1-\alpha_2$ spot doubling and for Lorentz-polarization and absorption factors. The linear absorption coefficient is $\mu = 147$ cm⁻¹ for Cu K α radiation and the absorption factors $A^* = A^{-1}$ ranged

^{*} Paper presented at the VII Congress of the International Union of Crystallography, Moscow, USSR, July 1966.

from 7.5 to 51.5. A secondary extinction correction was applied during refinement.

The intensities of the different levels were approximately on the same scale owing to the equal exposure times. After each structure factor calculation the scale was improved by the criterion $\Sigma F_o = \Sigma F_c$, applied separately to each level.

Structure analysis

Patterson sections normal to [010] were computed and the determination of the crystal structure was carried out on the basis of the following considerations: (1) A comparison of the intensities of melilite with those of leucophanite revealed some relevant correspondences. (2) The cell parameters of melilite are: a = 7.789, c = 5.018 Å; if these values are compared with those of leucophanite, one can see that a and b of this mineral are nearly identical with a of melilite while c has twice the length. (3) An arrangement of cations in positions analogous to those occupied by cations in melilite therefore appeared very probable, since these positions have a symmetry consistent also with the space group $P2_12_12_1$. Furthermore such positions should be occupied, at least to a certain degree, by different cations in the two halves into which the leucophanite cell may be divided (c of leucophanite is twice c of melilite) in order to account for its lower symmetry. (4) An analysis of the relative heights of the maxima of convenient Patterson sections should permit the determination of the differences in the arrangement of the atoms in the two halves of the cell and consequently the kinds of atoms occupying each position.

Some different arrangements derived from the Patterson sections were examined by means of their effects on calculated electron density projections on a plane normal to [010]. The correctness of the chosen hypothesis was verified by means of a three-dimensional electron density synthesis in which all the atoms were detected. At this stage the discrepancy factor computed on all the observed reflexions was 0.36.

Refinement

The method of least squares was applied in order to minimize the unweighted differences F_o-F_c . The calcu-

lations were carried out with a program which takes into account the full matrix (Sgarlata, 1965); the structure factors were derived from the atomic scattering factors obtained from Moore's (1963) constants considering all the atoms as half-ionized. At first three cycles were accomplished assuming an isotropic tem-

Fig. 1. Projection of the unit cell and key to the identification of the atoms and their coordination. The numbers without other specification refer to oxygen atoms.

Fig. 2. (a) The crystal structure of melilite projected along [001]. (b) The crystal structure of leucophanite. Open circles: Ca; filled circles: Na; white tetrahedra: Si; hatched tetrahedra: Mg; dotted tetrahedra: Be.

Table 1. Atomic coordinates and their estimated standard deviations (fractional $\times 10^4$); isotropic temperature factors

	x/a	y/b	z/c	В
Ca	0.1050 (4)	0.8265 (5)	0.9894 (3)	1·23 Å2
Na	0.0670 (11)	0.8535 (13)	0.5059 (8)	2.33
Si(1)	0.7406 (5)	0.0132 (7)	0.2507 (4)	0.85
Si(2)	0.1080 (5)	0.1508 (7)	0.2265(4)	0.71
Be	0.1091 (24)	0.1268 (50)	0.7174 (32)	1.84
O(1)	0.2421 (20)	0.0037 (23)	0.1623 (14)	1.38
O(2)	0.1052 (20)	0.1607 (29)	0.3829 (22)	1.46
O(3)	0.8382 (12)	0.8484(21)	0.3381 (12)	1.28
O(4)	0.8383 (14)	0.8308 (20)	0.8476 (12)	1.33
O(5)	0.9130 (14)	0.0746 (19)	0.6574 (10)	1.46
O(6)	0.9087 (17)	0.1000(18)	0.1627 (13)	1.35
F	0.1021 (13)	0.1315 (17)	0.8753 (9)	1.66

Table 2. Structure factors of leucophanite ($\times 10$)

	R	eflex	ions	mai	rked	1 wit	h a	n a	steri	sk	wer	e ur	lobs	serva	ably	wea	k;i	in th	ese	cas	es F	o is	deri	ived	fro	mϟ	Io n	in.	
h	1	F _o F _c		в	h I	L F _o	Fc	A	В	h	1 F	, ^F c	۸	В	h	1 F ₀	Fc	A	в	h	1 F.	, ^F c	٨	в	h	1 F.	Fc	A	В
		b 0 1			0 1	261	275	0	275-	1	1 21	9 201	127+	156-	3	1 213	248	244+	48-	5	2 405	5 401	175-	361-	6	4 23	* 14	6+	13+
					ĭi	203	156	80+	134-	2	1 13	4 139	0	139-	4	1 159	159	115+ 3	111-	6	2 244	220	220+	9- 69-	7	4 109	87	59 -	64+
2	0,	26* 20 95 1018:	20- 1018-	° 0	2 1	L 150 L 257	148 286 :	133-	221-	4	1 15	5 88 7 161	153+	53-	6	1 246	230	219-	73-	8	2 143	131	46-	123-	1	5 374	361	221+	286+
6	0 9	40 965	965-	0	4 1	L 294	297 144	49+	293+	5	1 21	5205 7215	195-	64+ 145+	7	1 111	77 * 14	58- 14+	52 - 4+	0	3 168	3 131) 298	131+	0 228+	2	5 163	206	131+ 98-	56- 182+
1	1 2	22 165	0	165+	6 1	87	73	43-	60+	7	1 24	206	193-	73+	ō	2 899	815	0 1	815+	2	3 116	123	84- 211-	91+ 130-	4	5 30	* 51	50+	11-
2	13	36 409 94 91	0 4	409+ 91-	7 1	156	132 208 :	38+ 142+	127+ 152-	8 9	1 14	4 145 R 102	121-	102-	2	2 236	222	39+ 3	219-	4	3 104	116	86+	79+	6	5 109	90	90-	4+
4	1	35* 6	ò.	6+	9 1	156	135	134+	23+	0	2 77	3 808	808-	0	3	2 483	543 168	31+ 1	543- 168-	5	3 171	177 60	140+ 44-	109- 42+	7	5 206 6 109	213	19- 0	213- 86-
6	1 3	16 309	0	309-	1 2	572	603	200-	569+	2	2 84	2 884	258+	846+	ŝ	2 173	144	89+	114+	7	3 193	212	200+	72-	1	6 494	494	296+	396+
7 8	1 2	91 87 15 201	0:	87+ 201-	2 2 3 2	2 986 1 2 257	.0331 271 :	.033+ 261+	12- 73+	4	2 24 2 19	243	204-	87+	7	2 163	146	52+ 3	137-	õ	4 100	5 55 5 85	85+	0	3	6 104	121	121+	3-
°	1	73 60	0	60+	4 2	2 330	388 : 302	331+	203+ 299+	5	2 64	5737 2403	131- 395+	726+ 80-	8 0	2 39	40 • 6	1- 0	40+ 6-	1 2	4 160	311 311	58- 309-	160+ 41-	4 5	6 257 6 326	283 378	280- 311-	44+ 215+
1	2 1	43 113	113-	ŏ	6 2	364	364 3	286-	226-	7	2 20	177	92+	152+	1	3 39	* 17	12+	13-	3	4 176	165	155-	58+ 166-	6	6 185	159	148+	59+
2 .?	27	00 755 50 824	755+ 824+	0	8 2	2 262	141 228 :	228-	21+	9	2 27	7 269	48-	265-	3	3 217	235	178+ 1	154+	5	4 231	276	186+	205-	1	7 171	119	88+	81-
4	2 3	00 307	307 - 146+	0	9 2	2 75	68 414	55+ 0	40+ 414-	0	3 20	5 193 5 237	193+ 213+	0 106+	5	3 198 3 137	211 103	209- 74+	32+ 72-	7	4 35	* 16	6+ 9+	15+ 37-	3	7 88	78	102+ 57-	22- 54+
6	21	22 94	94+	ò	1 3	3 74	72	49-	· 54+	2	3 29	L 291	12-	291-	67	3 222	213 58	209+	43- 19-	8 0	4 106	102	42+ 61+	94+ 0	4	7 163	194 78	19+	194-
8	2 2	56 231	231-	õ	3 3	132	126	75-	102+	4	3 9	5 91	85-	33-	8	3 77	71	65+	29-	1	5 83	86	68-	53-	6	7 73	73	22-	70-
9 1	2 1	97 169 27 373	169- 0 :	0 373-	4 3	3313 391	383 89	32+ 50-	382+ 74-	6	3 15	5 149	114-	97+	1	4 771	932	289+ 8	5- B87-	3	5 97	88	45-	76+	1	8 155	142	66-	126-
2	3 1	35 112	0 1	112+	6 3	160	150	20-	149+	7	3 27	3 281	273-	67- 103+	23	4 251	270	113- 2	246+ 185-	4	5 159	187	177- 54+	61+ 3+	2	8 108	107 235	45- 57-	98- 229+
4	3	36* 64	ŏ	64-	8 3	241	235 1	148-	183-	9	3 11	3 107	29-	103+	4	4 232	235	43- 2	232-	6	5 127	141	37-	137+	4	8 183	160	34-	157+
5	3 3 2	26 358 59 250	0	358+ 250-	9 3	492	480	0	480-	1	4 52	651	92-	645-	6	4 196	178	58+ 1	169-	ó	6 427	412	412-	0	ò	9 34	25	0	25-
7 8	3 4	84 62 98 89	0	62- 89-	1 4	329	374 : 680 (372+ 578+	43- 57-	2 3	4 37	L 446 L 327	394- 315-	210- 91-	7	4 337 4 159	368 123	53- 3 91+	365+ 84+	1 2	6 566	299	196+ 68+	552+ 292+	1 2	9 145 9 49	145 31	87+ 19+	117+ 25-
9	3	56 55	Ō	55-	3 4	694	857	231-	826+	4	4 34	381	375+	69+	0	5 147	124	0 1	124+	3	6 315	375	277+	254-	3	9 44	43	19-	39+
1	4 4	30 504	504+	0	5 4	285	305	114-	283-	6	4 11	5 73	67+	30-	2	5 90	81	68+	45+	5	6 274	329	2+	329-	0 1	0 57	60	0	60-
23	4	65 48 35* 45	48+ 45-	0 0	64	299 : 66	295 66	82- 14+	284+ 65+	7 8	4 24	228 265	25+ 45+	227+ 47-	3	5 231 5 77	246 85	206+ 1 76+	135- 40-	6 7	6 184 6 193	191	113+ 175-	154- 62-	1 1 2 1	0 178	176 206	104+ 204-	143+ 34+
4	4	37* 43	43+	0 0	8 4	107	103	42-	95-	0	5 41	441	441-	30-	5	5 272	343	341+	42+	0	7 112	87	87+ 188+	0	3 1	.0 63	72	43-	58-
6	4 4	33 449	449-	õ	1 5	232	228	73+	217-	2	5 25	278	63-	271-	7	5 54	43	41-	15+	2	7 101	84	39-	75+			h 6 1		
7 8	4 1	40 121 41 233	121- 233+	0 0	2 5	5 104 5 317 :	99 353 1	87- 124-	48+ 331-	3	5 7	3 87 9 214	14+ 201+	86+ 76-	1	6 475 6 396	448 411	74= 4	448- 405+	3	7 257	272	269- 50+	45- 69+	1	0 182	218	0	218-
9 1	4	14* 79 34* 33	79+ 0	0 33+	4 5	108	106 154 1	43+	97+ 54+	5	5 17	5 176	127-	123-	2	6 222	222 497	220+	34- 494-	5	7 43	53	50+ 66-	20- 27+	2	0 201	216 151	216-	0 151+
2	5 3	52 396	0 :	396+	6 5	43	32	8+	31+	7	5 11	104	91-	51+	4	6 235	278	166+ 2	223+	0	8 185	144	144-	0	4	0 259	219	219-	0
4	5	3/* 13	0	13+ 5-	.8 5	112	108	25+ 71+	82-	0	6 35	2 322	322-	0	6	6 86	92	74+ 5-	92+	2	8 272	266	148- 266-	103+	6	0 328	294	294-	2404
5 6	51 53	53 153 06 321	0 1	153- 321-	0 6	271 434	273 440 1	0 360-	273+ 254+	1 2	6 47	493 675	1- 169+	493- 654-	7	6 69 7 169	64 113	16- 0 1	62- 113+	3 4	8 171 8 300	157 331	157- 303+	8- 135+	7 0	0 19	* 17 76	0 76-	17+ 0
7 8	5 1	08 98	0	98+ 184-	2 6	493	539 5	536+	63+ 428-	3	6 26	280	8+ 52-	280+	1	7 78	72	20-	70- 21+	5	8 145	112	57- 34+	97⊶ 14-	1	1 169	174	73+	158+
ö	67	18 731	731+	0	4 6	447	522 4	82+	201-	5	6 24	251	18+	251+	3	7 109	104	83+	64+	ŏ	9 157	158	158+	0	3	1 168	173	165+	53-
2	6 3	46 222 10 321	222 - 321+	0	6 6	433 198	519 1 192 1	188-	41-	7	6 6	5 302 3 61	84+ 27-	291+ 55-	5	7 105	159 84	156- 70+	33- 47-	2	9 76	169	37- 96+	42+ 140-	5	1 146	141 192	138- 42+	30+ 188-
3	6 3	RO 421 R7 448	421+ 448-	0	7 6 8 6	169 352	176 316 1	14+ 314-	176- 43+	8 0	6 24	5215 2*2	90- 2-	196+ 0	6 7	7 164	178 30	177+ 30-	20- 1+	3	9 76 9 173	49	47- 187-	17+ 50-	6 7	1 167	159 69	4- 62-	159- 31+
5	6	35* 25	25-	0	0 7	308	287	0	287-	1	7 22	3 202	145+	142+	0	8 508	523	0	523+	5	9 77	73	37+	63-	ò	2 78	35	35-	0
7	6 2	34 219	219+	0	2 7	181	199 1	199+	4+	3	7 21	198	170+	102-	2	8 141	136	102-	91-	1 1	.0 80	70	48+	52+	2	2 362	394	376+	119-
8 1	6 18 7 24	40 214	155-	0 214-	37	87 261	60 290	60- 15+	10- 290+	4	7 5	138 1 38	30+ 131-	18- 44-	3	8 271 8 209	257 249	8- 1 26- 1	257 - 248-	21	.0 188 .0 35	184	118+ 39+	142+ 17+	3	2 44 2 268	20 269	1+ 268-	20-
2	7	54 39 36* 11	0	39+ 11+	57	39*	26 106	0 28	26- 103+	6 7	7 7	5 66	34+ 234-	57+ 71-	5	8 159 8 110	161 96	10+ 1	161- 80-	41	0 112	141	141-	8+ 0	5	2 98	81 31	4+	81-
4	7	37* 27	Ö,	27-	7 7	43	24	24+	1-	ò	8 7	64	64-	0	ò	9 119	88	0	88+	11	1 175	161	131-	95+	7	2 68	60	11-	59-
6	2	92 83	ŏ	83-	1 8	123	97	93-	28-	2	8 44	451	264-	366+	2	9 168	133	121-	56+	21	.1 90	, 97	9-	97+	1	3 180	184	124+	136-
0	7 4	48 45 53 874 :	0 874+	45- 0	28	134 544	74 566 1	73+ L17+	16- 554+	3	8 30	47 325	23+ 322+	41- 45+	3	9 173 9 88	173 77	168+ 56-	43- 53-			h 5 1	L		23	3 178 3 113	192 124	124- 114+	147+ 50+
1 2	8 9	96 86 38* 6	86+ 6+	0	4 8	215	215	76+ 23-	202+	5	8 58	57	46-	34+ 83-	5	9 178	199	198+	25+ 59-	1	0 24	* 16	0	16+	4	3 174	193	190+	39+
3	8 4	41 487	487+	0	6 8	100	106	9+	106-	7	8 14	136	120+	66+	0 1	0 71	64	0	64-	3	0 411	413	0	413+	6	3 153	139	13-	139-
5	8	32* 12	12+	ŏ	0 9	42*	8	0	8-	1	9 8	73	59-	44+	2 1	0 110	97	69 -	69+	5	0 96	60	0	60 -	ó	4 598	529	529+	0
7	8 3	79 401 - 30 319 -	401- 319-	0	1 9	137 58	42	17+	70- 39+	2	9 170	154 80	0 80-	154- 7-	3 1	.0 316 [.] .0 88	335 74	5- 3 61-	335- 42-	6 7	0 223	222	222-	0 109-	1 2	4 282	316 100	316+ 63+	3- 78-
1 2	9 23	24 185	0 1	L85- 272+	3 9	204 1	197 97	95- 83+	173- 51+	4	9 9	99	91+ 29-	39- 76-	5 1	0 154	147	38-1	143+ 7+	8 0	0 13	* 13	13+	0	3	4 168	206	183+	96+ 50-
3	9 10	00 91	0	91+	5 9	124	134 1	34-	0	6	9 130	108	74+	78+	11	1 81	66	66+	2+	ĩ	1 260	262	159+	234+	5	4 34	37	34-	15+
5	9	78 65	0	65+	0 10	102	78	0	78-	1	10 218	187	23-	186-	3 1	1 63	63	21-	8+ 60+	3	1 101	106	205- 89-	85 - 58+	õ	5 32	* 4	3/3-	0
01	9 2	23 251 33 141	0 2 141-	0	1 10 2 10) 368 1) 245 1	324 219 2	7°- 219+	315+ 14+	2 3	LO 29: LO 10:	106	129+ 92-	266- 54-	01	2 206	204 106	92+	204+ 54	4 5	1 132	126	38+ 104-	121-	1 2	5 42	41 341	40+ 70+	11-
1 1 2 1	0 8	35 58 52 332	58+ 332+	0	3 10	136	95 27	50+ 13+	81+ 24-	4	10 118	109	94- 35+	57- 210-			1			6	1 45	20	16-	13-	3	5 83	97	97+	3+
31	0 0	3 70	70-	0	5 10	174	167 1	37+	97+	0	1 120	105	105-	0						8	1 142	148	91+	117+	5	5 57	57	23+	85+ 53-
5 1	0 2	22* 31	31-	õ	1 11	146 1	185	56-	185-	2 :	LI 19.	196	185+ 62-	66+ 40-	1	0 433	499 705	0 4 705-	499+ 0	0	2 139 2 327	149 327	0 51-	149- 323+	6 0	5 185 6 103	233 61	71+ 61+	222-
1121	$1 14 \\ 1 6$	4 135 58 50	01	50-	2 11 3 11	113 1	106 124	99+ 17+	40- 123-	3 :	1 20:	207	205+	29- 4-	3	0 202	178	0 1	L78-	2	2 635	722	711-	131-	1	6 102	86	19-	84+
31	1 1	23* 32	0	32+	4 11	194 1	186	13+	186+	0 1	12 13	125	125+	0	5	0 218	179	0 1	179-	4	2 349	360	311-	183+	3	6 83	83	76-	35-
0 1	2 3	72 379	379+	0	1 12	191 1	181	83+	161-	2 1	12 17	160	160-	2+	7	0 79	39	0	39 -	6	2 259	256	121+ 256+	70+ 7+	5	6 167	164 * 5	157-	50+ 3+
1 1 2 1	2 26	1 139	236+ 139-	0	2 12 3 12	253 2	223 2 65	18+ 58-	49- 31+			h 3 1	L		8 0	0 88	70 243	70+ 243+	0	7 0	2 259	235 276	100+	213- 276+	0	7 70	62 161	62+	0
31	2 1	64 192	192+	0		۲	2 1			1	0 669	607	^	697	1	1 234	279	225- 1	165-	1	3 292	308	225+	210-	2	7 41	44	43-	11-
		h 1 1						~		2	0 38	* 11	11-	0	3	1 279	300	269- 1	135+	3	3 34	* 48	37-	31-	3	/ 66 7 100	53 88	38+ 87+	37+ 14-
1	0 2	21* 54	0	54+	2 0	581	230 588 5	0 588-	230+ 0	3	0 998	993) 970	0 170+	993- 0	4 5	1 316 1 122	310 103	302 - 72+	71+ 75+	4 5	3 259 3 233	286 242	34- 241-	284- 31-	5 0	7 189 8 477	215 462	39+ 462+	212+
23	0 24	2 230 3 24 648	230- 0 6	0 48+	3 0	78	64 790 7	0 790+	64+ 0	5 6	0 316	296	0	296-	6 7	1 160	149 235	41- 1	144+ 36+	67	3 121	117	41+	110-	1	8 100	85	44-	73-
4	0 44	46 463 4	463+	0 87-	5 0	416 4	424	0	424-	7	0 689	721	0	721+	8	1 46	41	17+	38+	ó	4 65	48	0	48+	ŝ	8 130	138	113+	80+
6	0 1	54 161	161+	0	7 0	61	51	0	51-	9	0 1	* 87	0	87+	1	2 407	464	180- 4	28+	2	4 196 4 366	423	414-	90- 90-	4	8 102 9 94	129 82	121- 82-	47 - 0
8	0 18	201	115-	0	× 0 9 0) 245 '	332 72	°6+ 0	0 225+	0	1 258	314 236	0 231-	314+ 50+	2 3	2 238 2 184	230 167	228+ 125- 1	34- 12-	3 4	4 327 4 145	364 157	149+ 123-	333+ 99-	1 2	9 156 9 186	153 194	136+ 73+	71-
9	0 1	35 109	0 1	109-	0 1	?36 :	345 3	345-	0	?	1 130	125	98+	78+	4	2 419	472	426- 2	204+	5	4 247	271	34+	259-	3	9 133	175	166+	57+

perature factor for each atom; the progress of refinement was indicated by a fall of the R value from 0.36 to 0.12.

Four more cycles with the attribution of anisotropic thermal factors to each atom followed by secondary extinction correction lowered R to 0.086. However this anisotropic refinement was not considered completely reliable because it was accomplished on data scaled by layers and only on the basis of the independent reflexions of the orthorhombic space group. Moreover the standard deviations of all the parameters are exceedingly high and thus seem to indicate that the parameters obtained for an atom (and its equivalents) in the space group $P2_12_12_1$ are an average of the independent values that could be obtained in the space group P1. However, these values would not be very different from those published here.

The anisotropic refinement will be carried out with all the independent triclinic reflexions. At the present time the refinement has been brought to completion as follows: a secondary extinction correction was calculated after the third isotropic least-squares cycle because a plot of $\ln I_c/I_o$ against I_c for the 104 most intense reflexions ($I_o > 1000$ on the absolute scale) indicated a conspicuous secondary extinction effect. A linear relation between $\ln I_c/I_o$ and I_c was assumed and a least-squares secondary extinction coefficient derived. This was applied as a correction to all the F_o 's through the formula: $(F_o)_{corr} = (F_o)_{ext} \cdot exp(\frac{1}{2}\varepsilon I_c)$ where $\varepsilon =$ $3.739 \cdot 10^{-5}$. The above correction lowered the *R* value to 0.097. After two more isotropic cycles, when the shifts were largely less than the standard deviations, the refinement was stopped.

The final R for 586 observed reflexions was 0.094 and 0.100 for all the 628 reflexions (giving to the unobserved ones a value half of the least observed intensity).

The atomic parameters, their standard deviations (Cruickshank, 1949) and the isotropic thermal parameters are shown in Table 1. The observed and calculated structure factors are presented in Table 2. Interatomic distances and angles are presented in Table 3 as well as their standard deviations (Ahmed & Cruickshank, 1953; Darlow, 1960). Reference should be made to Fig. 1 to identify the labelled atoms.

Discussion

The crystal structure of leucophanite is closely related to that of melilite. The two crystal structures are compared in Fig.2. In melilite Si_2O_7 groups are present and are connected by MgO₄ tetrahedra to form sheets between which the calcium atoms are arranged. The sites occupied by Ca in the melilite structure are split in leucophanite into two series of positions occupied by Ca and Na respectively. Beryllium does not occur in the Mg site but in one of the Si sites, and one Si occupies the Mg site while the other lies in the same position as in melilite. So no Si₂O₇ group is present in

Table 3. Interatomic distances, angles, and their standard deviations (in brackets)

	Bond length	Mean		Bond angle	Mean
Si(1)O(5)	1·605 (11) Å		O(5)Si(1)O(4)	112.3 (6).	
O (4)	1.615 (14)		O(6)	112.5(0) 112.7(6)	
OĠ	1.651 (13)		O(3)	108.1(7)	
O(3)	1.664 (14)	1.634 Å	O(4)Si(1)O(6)	108.0 (7)	
	· (- ·)		O(3)	111.8(7)	
Si(2)O(2)	1.556 (22)		O(6)Si(1)O(3)	103.6 (6)	109.4 °
ΟÜ	1.607 (16)		0(0)5!(1)0(5)	105 0 (0)	1074
O (3)	1.649 (15)		O(2)S(2)O(1)	115.9 (9)	
0(6)	1.649 (13)	1.615	O(2)O(2)O(1)	110.5(9)	
- (-)				110.5(7)	
BeO(1)	1.565 (32)		O(1)S(2)O(3)	107.5(7)	
F	1.570(33)		O(6)	107.5(7) 104.1(7)	
O(5)	1.616 (24)		O(3)S(2)O(6)	105 6 (6)	100.3
Q(4)	1.691 (38)	1.610	0(3)51(2)0(0)	105 0 (0)	109-5
-(.)		1 010	O(1)BeF	112.7 (1.9)	
CaO(2)	2.354(19)		O(1)	1127(17) 110.8(2.2)	
O(5)	2.374(13)		O(4)	104.9 (1.6)	
oùí	2.389 (15)		FBeO(5)	$110 \cdot 1 (1 \cdot 5)$	
O(2')	2.393 (16)		O(4)	1107(2.1)	
O(4)	2.425(11)		O(5)BeO(4)	106.3(2.0)	109.4
F	2.531(12)		0(0)200(1)	100 5 (2 0)	107 4
O(4')	2.639 (12)				
Olo	3.032(13)				
NaO(1)	2.352 (17)				
O(3)	2.377 (13)				
F	2.381 (14)				
O(5)	2.501 (14)				
O(6)	2.525 (15)				
O(2)	2.601 (23)				
F'	2.773 (12)				
O(3')	2.945 (14)				

leucophanite, but zigzag chains of SiO₄ tetrahedra are formed and are nearly parallel to [010]. These chains are connected by BeO₄ tetrahedra to form sheets between which the atoms of Ca and Na lie. If, as Zoltai (1960) correctly suggests, no distinction is made between SiO₄, BeO₄ and MgO₄ tetrahedra, leucophanite can be classified as a single sheet silicate together with melilite (and meliphanite). The above mentioned chains could justify the {100} and {101} cleavages while the {001} cleavage is due to the presence of the sheets.

The differences between the crystal structures of melilite and leucophanite can be due, according to Zachariasen, to the presence of fluorine in the latter. In fact in synthetic Be-akermanite (Goria, 1953) and gugiaite Ca₂BeSi₂O₇ (Peng, Tsao & Chou, 1962) there is a complete replacement of Mg by Be and presumably Be occupies the position of Mg and is connected with four Si atoms. The tetragonal symmetry is not modified: the space group of Be-akermanite and gugiaite is $P\overline{42_1m}$; the cell parameters of the former are a=7.501, c=4.931 Å and of the latter a=7.48, c=5.04 Å. But if in leucophanite Be were to remain in the positions of Mg in melilite, fluorine would be connected with Si, and this does not generally happen in natural silicates.

The bond distances and angles of the tetrahedral cations are quite regular and comparable to those found in other silicates.

The bond distances of Ca and Na are listed in Table 3 in order of increasing length. It is rather difficult to decide what is the coordination number of these cations on the basis of these bond distances. Smith describes the coordination polyhedron of Ca in melilite as an archimedean antiprism built up by four atoms at about 2.44 Å and four at about 2.70 Å, but the resulting electrostatic equilibrium is unsatisfactory however one computes it. In the present case one can reject the eight-coordination for Ca and, perhaps, the sevencoordination for Na, because some distances are surely too long. Moreover a careful analysis shows that the interaction between Ca and Na and the seventh atom must be very little because in both cases this atom is nearly completely screened by other oxygen atoms. The sixfold coordination for both the cations gives also the least discrepancies in the electrostatic equilibrium. The sixfold coordination polyhedron of Ca is not an octahedron but resembles a trigonal prism; the length of its sides ranges from 2.65 to 3.65 Å. The sixfold coordination polyhedron of Na is a very distorted octahedron (sides ranging from 2.62 to 4.54 Å, O-Na-O angles ranging from 58 to 157°). For these reasons leucophanite does not seem to be referable to Belov's (1961) 'second chapter' silicates. However, no conclusive statement can be made before the triclinic refinement of the crystal structure.

References

- AHMED, F. R. & CRUICKSHANK, D. W. J. (1953). Acta Cryst. 6, 385.
- BELOV, N. V. (1961). Crystal Chemistry of Large-Cation Silicates (English translation), p. 3. New York: Consultants Bureau, 1964.
- CRUICKSHANK, D.W. J. (1949). Acta Cryst. 2, 65, 154.
- DAL NEGRO, A., ROSSI, G. & UNGARETTI, L. (1967). Acta Cryst. 23, 260.
- DARLOW, S. F. (1960). Acta Cryst. 13, 683.
- GORIA, C. (1953). Atti Accad. Torino, Classe sci. fis. mat. nat. 88, 153.
- MOORE, F. H. (1963). Acta Cryst. 16, 1169.
- PENG, C.-S., TSAO, Y.-L. & CHOU, T.-Y. (1962). Scientia Sinica, 11, 977.
- SGARLATA, F. (1965). Period. Min. 34, 401.
- SMITH, J. V. (1953). Amer. Min. 38, 643.
- STRUNZ, U. (1966). *Mineralogische Tabellen*, p. 346. Leipzig: Akad. Verlag Ges. Geest & Portig K.-G.
- WARREN, B. E. (1930). Z. Kristallogr. 74, 131.
- ZACHARIASEN, W. H. (1930). Z. Kristallogr. 74, 226.
- ZACHARIASEN, W. H. (1931). Norsk geol. Tidsskr. 12, 577.
- ZOLTAI, T. (1960). Amer. Min. 45, 960.